Central Texas College District Water Quality Report 2012 Year this report covers:2012 Source(s) of Water Type(s) of water Surface water Any commonly used name of the body of water: We purchase water from the City of Copperas Cove who obtains the water from Bell County Water Control and Improvement District #1 from Belton Lake surface water supply. Location of the body of water : Beiton Lake located in Bell County ## **Consumer Confidence Report** ## Information Specific to your Community Public Water System ### Source Water Assessment Protection The TCEQ has completed a Source Water Assessment for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system, contact: Michael Murphy at 254-526-1925 ## 2012 Annual Drinking Water Quality Report PWS 10 Number: TX0140174 PWS Name: CENTRAL TEXAS COLLEGE KILLEEN Annual Water Quality Report for the period of January 1 to December 31, 2012 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Notline at (800) 426-4791. For more information regarding this report contact: Name, Michael Murphy Phone 254-526-1925 Este informe contiene información muy importante sabre el agua que usted bebe. Traduzcalo 6 hable con alguien que 10 entienda bien. Consumer Confidence Report (CCR) ### Special Notice # Required Language for ALL Community Public Water Systems Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (#00-426-4791). If present, elevated levels of lead can cause serious health problems, especially for prognant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, vou can minimize the potential for lead exposure by flushing your cap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Notline or at http://www.epa.gov/safewater/lead. The source of drinking water used by CENTRAL TEXAS COLLEGE KILLEEN is Purchased Surface Water We purchase water from the City Of Copperas Cove who obtains the water from Bell County Water Control/Beton Lake The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, pends, reservoirs, springs, and walls. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick Up substances resulting from the presence of Contaminants that may be present in source - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. #### Information about Secondary Contaminants Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water. ## **Annual Drinking Water Quality Report** TX0140174 06/03/2013 #### CENTRAL TEXAS COLLEGE KILLEEN Annual Water Quality Report for the period of January 1 to December 31, 2012 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. CENTRAL TEXAS COLLEGE KILLEEN is Purchased Surface Water For more information regarding this report contact: Name Michael Murthy Phone 254-526 - 1925 Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (____) ### Sources of Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vuinerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. 12 #### Lead and Copper Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|---| | Copper | 2012 | 1.3 | 1.3 | 0.0377 | 0 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems, | | Lead | 2012 | 0 | 15 | 1.72 | 0 | ppb | N | Corrosion of household plumbing systems;
Erosion of natural deposits. | #### Water Quality Test Results Definitions: The following tables contain scientific terms and measures, some of which may require explanation. Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. million fibers per liter (a measure of asbestos) MFL na: not applicable. NTU nephelometric turbidity units (a measure of turbidity) pCi/L picocuries per liter (a measure of radioactivity) 12 #### Water Quality Test Results ppb: mlcrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. ppt parts per trillion, or nanograms per liter (ng/L) ppq parts per quadrillion, or picograms per liter (pg/L) #### Regulated Contaminants | Disinfectants and Disinfection
By-Products | Collection Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |---|-----------------|---------------------------|-----------------------------|-----------------------|-----|-------|-----------|--| | Haloacetic Acids (HAA5)* | 2012 | 15 | 14.4 - 26.8 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | Total Trihalomethanes
(TTHM) | 2012 | 18 | 18.4 - 31.2 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | | inorganic Contaminants | Collection Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Nitrate [measured as
Nitrogen] | 2012 | 0.42 | 0.255 - 0.42 | 10 | 10 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | Nitrite [measured as
Nitrogen] | 2012 | 0.03 | 0.015 - 0.03 | 1 | 1 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. |